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late development of opx3-sil3-qz at 
the expense of crd2 suggesting a 
come back into the opx-sil-qz stability 
field probably through an IBC at ~7 
kbar.

This very fine symplectite is visible 
on the photo 1-2-3.

A sequence of symplectite assemblages 
developed at the expense of grt, opx and 
sil indicate a near-ITD of the order of 3-4 
kbar, at about 900-1000°C : [spl]>T>[qz]

others ITD observed reactions :
	opx + sil = grt + spr + crd
	grt + sil = spr + crd
	grt + qz = opx + crd
	grt = opx + spl + crd

IN-SITU ELECTRON MICROPROBE MONAZITE DATING OF THE COMPLEX RETROGRADE EVOLUTION OF 
UHT GRANULITES FROM ANDRIAMENA (MADAGASCAR) :
APPARENT PETROGRAPHICAL PATH VS REAL PTt PATH.
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figure 2 : Structural map of the Andriamena area derived from the study of satellite 
images (SPOT), 1/100 000 geological maps (Besairie, 1969) and our field investigations.

	Madagascar forms a part of the Mozambique belt, resulting of the continental 
collision between East and West Gondwana. Structures related to this event, 
like vertical lithospheric shear zones, are in agreement with an East-West 
horizontal shortening (Martelat et al., 2000) (figure 1).

	The basement is generally divided in two parts. South of the BRSZ consists of 
Proterozoic rocks strongly reworked during Pan-African times (600-530 Ma). In 
contrast the North, consists mainly of late Archean rocks (granitoids, migmatitic 
gneiss...) strongly reworked during a widespread igneous and metamorphic 
activity of middle Neoproterozoic age (~800-770 Ma) and late Neoproterozoic 
(~580-520 Ma). Our study area is located in this North part and more precisely 
in the Andriamena mafic gneiss complex (figure1).
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figure 1 : Simplified geological and structural map 
of the Precambrian of Madagascar (Martelat, 1998)
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	 	The Andriamena complex is part of four North-South Archean mafic gneiss belt interpreted to form part of the same lithological unit. It corresponds to a synformal belt, 
structulary overlying the granitic and migmatitic basement. The lithologies consist of amphibolite gneiss, migmatite, metasedimentary rocks intruded by mafic-ultramafic 
bodies at 787 ± 16 Ma (Guerrot et al., 1993).

The structural pattern (figure 2) results of the superposition of two distinctive phases of deformation.
			 - D1 deformation can be observed outside the high strain zone D2. Structures related to this event (figure 3) are compatible with vertical shortening in a coaxial strain.
	 	 	- D2 event is characterized by the refolding of the S1 foliation into kilometric to centimetric folds (F2) with sub-horizontal axes. These folds with North-South axial plane 
are coherent with an horizontal East-West shortening. The shortening is associated with a strain partitioning between high strain zones (figure 2), characterized by uprigh 
F2 folds, and open folds areas. F2 folding affects also the stratoid granites dated at 630 Ma (Paquette et Nédélec, 1998) (figure 2).
This tectonic evolution is the same as the one proposed by Martelat et al. (2000) for the southern Madagascar during the late Neoproterozoic.	
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figure 3 : Example of D1 structures observed in 
preserved area of the D2 deformation

S1 foliation affected by
a chocolate-block boudinage

L1 stretching lineationF1 fold axis parallel
to the L1 lineation

	The Eastern part is characterized by dome-and-basin structures. It is probably the result of gravity instabilities 
between the dense mafic complex (forming the basin) and the overlyied low-density granitoid crust (domes) 
(figure 2). In the western part, the extensional mylonitic detachment between the two lithological units is not 
interpreted as a consequence of regional extension but as a decollement linked with the relative  downward and 
upward moving of the two units.

figure 4 : 3D schematic diagram showing the 
interference between boundary forces (horizontal 
regional shortening D2) and body forces (diapiric 
tectonic).

	 	 	UHT metamorphism (>900°C, 7-13kbar) have been recognized in several terranes of the futur East Gondwana (India, Sri Lanka, 
Antartica). In Madagascar, it have been firstly identified by Nicollet et al. (1991). High Mg-Al granulites preserve numerous complex 
coronitic and symplectite textures providing plenty information to reconstruct an almost continuous petrographical PT path, near the 
peak temperature. PT evolution can be deduced from a FMAS petrogenetic grid (figure 5).
				Sapphirine-bearing granulites occur in two localities (figure 2) and compose an infinitesimal volume with respect to the Andriamena 
complex. Due to the tropical weathering, they form several boulders, wich certainly come from a very near locality.

- UHT metamorphism

- near Isothermal Decompression (ITD)

- Isobaric Cooling (IBC)

Earliest assemblage (spr0-grt0-qz) implies
peak PT conditions of ~11kbar, >1050°C

	spr 0 + qz = opx1 + sil1

	 	 	 	cooling above the P [spl]

1

	opx 1 + sil1 + qz = crd22 	opx 0 + sil = spr2 + crd23

	grt 0 = opx2 + spr2 + crd24	crd 2 = opx3  + sil3 + qz5

sil0

crd2

opx3 +
sil3

sil3 +
qz

	 	Near, the Al-Mg granulites outcrop, occur Metapelitic Migmatites in wich quartzo-feldspathic layers alternate 
with restitic layers characterized by various assemblages (grt bearing and qz-absent grt-spl bearing metapeltites).
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	 	 PT path deduced from the metapelitic migmatites records a 
heating-cooling path at about 7 kbar without any significant 
change in pressure (figure 6).

Initial prograde melting was achieved by biotite dehydration-
melting reactions at temperature below 850 °C. 

The cooling part of this PT evolution is characterized by the late 
development of sil (±grt) coronas around spl and bio-sil patches 
interpreted as  the result of back melting reactions between 
the spl and the silica-undersatured melt.

CONCLUSION

	 	Petrographical investigation of both samples clearly shows two different PT evolutions. The UHT and 
near isothermal decompression characteristic of the Al-Mg granulite are not recognized in the 
migmatite, whereas the isobaric cooling at about 7 kbar is recognized in the both. Nevertheless, without 
geochronological constraints, it is very difficult to interpret these PT paths.

ELECTRON MICROPROBE DATING OF MONAZITE

figure 10 : Semi-quantitative partial grid of KFMASH and FMASH univariante reactions, with the PTt 
path of Al-Mg granulites (blue) and migmatites (orange). Continuous section of the P-T path are 
those chronologically constraint and the dashed ones are not.

			U-Th-Pb electron microprobe dating have been use to constrain the metamorphic evolution from the Al-
Mg granulites and migmatites. This in-situ technique have the advantage to combine textural observations 
and chemical composition to distinguish several episodes of monazite growth or reset during 
thermal events.
 This method is useful in polymetamorphic cases, like the North-Central Madagascar, where at least 3 
magmatic and/or metamorphic events have been recognized (Guerrot et al., 1993; Nicollet et al., 1997; 
Tucker et al., 1999 and Kröner et al., 2000).

		Three populations were identified in thin-sections :

					- monazites included in garnet yield the oldest age with systematically a maximum at 2.5 Ga (figure 7), We 
consider this late Archean age, as proposed by Nicollet et al. (1997), to reflect the timing of the UHT 
metamorphism. The conservation of this old event is related to the shielding effect of garnet for the U-Th-Pb 
system (Montel et al., 1996).

					- matrix grains, 20-70 mm in size, with irregular morphologies, yield ages from about 1.8 Ga to 710 Ma with 
a main age population at 770 Ma (figure 7). We suggest that these monazites grew during the 2.5 Ga UHT 
event and they were subsquently totally (or no) reset at 770 Ma.

	 	  - monazites <20 mm in size, in close association with the opx3-sil3-qz symplectites (figure 9) are 
characterized by a single age population at about 770 Ma. Textural relationships and chemical composition 
(figure 8) suggest a new episode of monazite growth at 770 Ma, contemporaneously with the late 
development of the opx3-sil3-qz assemblage (ie the IBC at ~7kbar).
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figure 9 : backscattered electron image 
showing the textural relationships between 
this monazite population and the opx3-sil3-qz 
symplectite. The growth of the monazite is 
contemporaneous with the crystallisation of 
the symplectite. 
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CONCLUSION 

APPARENT PETROGRAPHICAL PATH VS REAL PT PATH

				What is the signification and the age of the petrographical ITD recorded by the Al-Mg granulites ?

		1) Decompression occured during the UHT event at 2.5 Ga.

	 	 Isothermal decompression textures define a real PT 
path at 2.5 Ga. 
After UHT-ITD stages, granulites cooled to normal thermal 
conditions (near the steady state geotherm) at 2.5 Ga. 
The conservation of the UHT assemblages is related to 
the refractory behaviour of Al-Mg granulites. 

		 	 	In a second time, at 770 Ma, a thermal event generate 
partial melting, destabilisation of the crd2 into opx3-sil3-qz 
symplectite, and an isotopic resetting associated with a 
new monazite growth episode.
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		The UHT metamorphism and the cooling (near isobaric?) 
to the steady state geotherm were achieved in a single 
event at 2.5 Ga.

	 The thermal perturbation at 770 Ma brought back the 
sample to high temperature (~850°C, 7kbar). The primary 
UHT assemblages were reequilibrated in this new 
conditions by a fictive PT path (isothermal 
decompression of about 3-4 kbar)  joining the 2.5 Ga 
"high pressure" stability field and the lower pressure 
stability field associated with the 770 Ma event.
	 	 In the same time, partial melting, isotopic resetting and 
new monazite growth occured.

A POLYMETAMORPHIC HISTORY FOR THE ANDRIAMENA COMPLEX: IMPLICATIONS 
FOR THE PRE-GONDWANA EVOLUTION.

					The earlier stage at 2.5 Ga is characterized by UHT metamorphism (> 1050°C , ~11 kbar), associated with 
a late Archean granitoid magmatism. The Southern part of India (Nilgiri, Palni Hill Ranges) is composed of 
granulite terranes subjected to UHT metamorphism at 2.5 Ga. It suggests that the already proposed 
connection between South India and North-Central Madagascar is a strong probability.

		 	The 770 Ma metamorphic event (partial melting at 850°C, ~7 kbar) could be the consequence of a thermal 
perturbation caused by the emplacement of basic intrusions at this time. Handke et al. (1999) proposed a 
continental arc setting for the Neoprotrerozoic magmatism, in relation with the subduction of the Mozambique 
ocean under the North-central part of Madagascar (breakup of Rodinia).

	 	 	 	 	Archean basement was structurally reworked during the late Neoproterozoic. The finite geometry reflects 
an E-W shortening related with the cratonic convergence between East and West Gondwana and  
contemporaneous with a granulitic metamorphism widely recognized in the South of Madagascar (Martelat et 
al, 1997).

			CONCLUSION

	 	 We suggest that the Pan-African geometry and strain pattern reflect the interference between E-W 
regional horizontal shortening  (boundary forces) and diapiric structuctures (body forces) (figure 4). 

CONCLUSION

	 	 	 It is obvious that the petrographical PT path deduced from the Al-Mg granulites cannot be 
considered as a continuous path in a single metamorphic event. At least two distinct geochronological 
events occured (figure 10):
													
													- UHT metamorphism preserved in Al-Mg granulites at 2.5 Ga
													
													- Partial melting and the IBC at ~7 kbar at 770 Ma
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figure 5 : petrographical PT path deduced from the Al-Mg 
granulites in a FMAS system (black lines = univariante 
reactions and dashed lines = isopleths for divariante reactions) 
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figure 7 : Weighted-histogram representation of all the electron-microprobe 
monazite ages derived from one Al-Mg granulite. Inset: data from monazites 
include in garnets from another granulite.
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