Bibliographie des articles du n°136 de Géochronique

 

136

Métamorphismes extrêmes et refroidissement de la Terre (C. Nicollet)

La bibliographie proposée pour cet article est minimale : les références indiquées ne sont que des exemples dans la nombreuse bibliographie sur le sujet.

Agbossoumonde y., menot r.-p., gulllot s. (2001). – Metamorphic evolution of Neoproterozoic eclogites from south Togo (West Africa). Journal of African Earth Sciences, 33, p. 227-244.

Brown M. (2014). – The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geoscience Frontiers, 5, p. 553-569.

Bosse V., Ballèvre M., Vidal O. (2002). — Ductile thrusting recorded by the garnet isograd from the blueschist-facies metapelites of the Ile de Groix, Armorican Massif, France. Journal of Petrology, 43, p. 485-510.

Clark C., Fitzsimons I.C.W., Healy D. and Harley S.L. (2011). – How does the continental crust get really hot? Elements, 7, p. 235-240.

Cross C.B., Diener J.F.A. and Fagereng A. (2015). – Metamorphic imprint of accretion and ridge subduction in the Pan-African Damara Belt, Namibia. J. metamorphic Geol., 33, p. 633-648.

Dokukina K.A., Kaulina T.V., Konilov A.N., Mints M.V., Van K.V., Natapov L., Belousova E., Simakin S.G., Lepekhina El. N. (2014). – Archaean to Palaeoproterozoic high- grade evolution of the Belomorian eclogite province in the Gridino area, Fennoscandian Shield: Geochronological evidence. Gondwana Research, 25, p. 585-613.

Galli A., Le Bayon B., Schmidt M.W., Burg J.-P., Caddick M.J., Reusser E. (2011). – Granulites and charnockites of the Gruf Complex: Evidence for Permian ultra-high temperature metamorphism in the Central Alps. Lithos, 124, p. 17-45.

Goncalves P., Nicollet C. and Montel J.M. (2004). – Petrology and in-situ U-Th-Pb monazite geochronology of Ultra-High Temperature metamorphism from the Andriamena mafic unit, north-central Madagascar. Significance of a petrographical PT path in a polymetamorphic context. Journal of Petrology, 45, p. 1923-1957.

Hacker B.R., Gnos E., Ratschbacher L., Grove M., McWilliams M., Sobolev S.V., Wan J., Zhenhan W. (2000). – Hot and Dry Deep Crustal Xenoliths from Tibet. Science, 287, p. 2463-66.

Hawkesworth C., Cawood P., Dhuime B. (2013). – Continental growth and the crustal record. Tectonophysics, 609, p. 651-660

Harley S.L. (1998). – On the occurrence and characterization of ultrahightemperature crustal metamorphism. In: Treloar, P.J., O’Brien, P.J. (Eds.), What Drives Metamorphism and Metamorphic Relations? Geological Society, London, Special Publication, 138, p. 81-107.

Jahn B., Caby R. and Monie P. (2001). – The oldest UHP eclogites of the world: Age of UHP metamorphism, nature of protoliths and tectonic implications. Chemical Geology, 178, p. 143-158.

Johnson T.E. and White R.W. (2011). – Phase equilibrium constraints on conditions of granulite-facies metamorphism at Scourie, NW Scotland. Journal of the Geological Society, London, 168, p. 147-158.

Karson J.A. (2001). – Oceanic crust when earth was young. Science, 292, p. 1076-7.

Kelsey D.E., Hand M. (2015). – On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers, 6, p. 311-356.

Lardeaux J.M. (2014a). – Deciphering orogeny: a metamorphic perspective. Examples from European Alpine and Variscan belts Part I: Alpine metamorphism in the western Alps. A review. Bull. Soc. géol. France, 185, p. 93-114.

Lardeaux J.M. (2014b). – Deciphering orogeny: a metamorphic perspective Examples from European Alpine and Variscan belts Part II: Variscan metamorphism in the French Massif Central–A review. Bull. Soc. géol. France, 185, p. 281-310.

Martin H. (1986). – Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14, p. 753-756.

Maruyama S., Liou J., and Terabayashi M. (1996). – Blueschists and eclogites of the world and their exhumation. International Geology Review, 38, p. 490-596.

Möller A., Appel P., Mezger K., Schenk V. (1995). – Evidence for a 2 Ga Subduction Zone: Eclogites in the Usagaran Belt of Tanzania. Geology, 23, p. 1067-1070.

Pease V., Percival J., Smithies H., Stevens G. and Van Kranendonk M. (2008). – When did plate tectonics begin? Evidence from the orogenic record. GSA Special Papers, 440, p. 199-228.

Redler C., Johnson T.E., White R.W. and Kunz B.E. (2012). – Phase equilibrium constraints on a deep crustal metamorphic field gradient: metapelitic rocks from the Ivrea Zone (NW Italy). J. metamorphic Geol., 30, p. 235-25.

Reese C.C., Solomatov V.S., Baumgardner J.R. and Yang W.S. (1999). – Stagnant lid convection in a spherical shell. Physics of the Earth and Planetary Interiors, 116 (1-4), p. 1-7.

Sajeev K., Windley B. F., Hegner E. and Komiya T. (2012). – High-temperature, high-pressure granulites (retrogressed eclogites) in the central region of the Lewisian, NW Scotland: crustal-scale subduction in the NeoArchaean. Gondwana Research, 23, p. 526-538.

Smithies R.H., Champion D.C., and Cassidy K.F., (2003). – Formation of Earth’s Early Archean continental crust. Precambrian Research, 127, p. 89-101.

Stern R.J. (2005). – Evidence from ophiolites, blueschists, and ultrahigh-pressure meta-morphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, 33, p. 557-560.

Stüve K. (1995). – Thermal buffering effects at the solidus. Implications for the equilibration of partially melted metamorphic rocks. Tectonophysics, 248, p. 39-51.

Pownall J.M., Hall R., Armstrong R.A., Forster M.A. (2014). – Earth’s youngest-known ultrahigh-temperature granulites discovered on Seram, eastern Indonesia. Geology, 42, p. 279-282.

Tsujimori T., Sisson V.B., Liou Juhn G., Harlow G.E., Sorensen S.S. (2006). – Very-low-temperature record of the subduction process: A review of worldwide lawsonite eclogites Lithos, 92, p. 609-624.

Vielzeuf D., Holloway J.R. (1988). – Experimental determination of the fluid-absent
melting relations in the pelitic system: consequences for crustal differentiation. Contributions to Mineralogy and Petrology, 98, p. 257-276.

Vielzeuf D., Clemens J.D., Pin C., Minet E. (1990). Granite, granulites and crustal differentiation. In: Vielzeuf D., Vidal P. (Eds.), Granulites and Crustal Evolution. NATO Scientific Publication. Kluwer Academic Publishers, p. 59-85.

Wolf M.B. and Wyllie P.J. (1994). – Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib. Mineral. Petrol., 115, p. 369-383.

 

Piégeage et libération des halogènes dans les métagabbros océaniques ( C. Nicollet et F. Cattani)

Coogan L.A., Wilson R.N., Gills K.M. and MacLeod C.J. (2001). – Nearsolidus evolution of oceanic gabbros: Insights from amphibole geochemistry. Geochimica and Cosmochimica Acta, 65, p. 4339-4357.

Garofalo P.S. (2011). – The composition of Alpine marine sediments (Bündnerschiefer Formation, W Alps) and the mobility of their chemical components during orogenic metamorphism. Lithos, 128-131, p. 55-72.

Gillis K.M., Coogan L.A. and Chaussidon M. (2003). –Volatile element (B, Cl, F) behaviour in the roof of an axial magma chamber from the East Pacific Rise. Earth and Planetary Science Letters, 213, p. 447-462.

Hattori K.H. and Guillot S. (2007). – Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: Recycling of elements in subduction zones. Geochemistry Geophysic Geosystems, DOI:10.1029/2007GC001594.

Lafay R., Deschamps F., Schwartz S., Guillot S., Godard M., Debret B. and Nicollet C. (2013). – High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: Example from the Piedmont zone of the western Alps. Chemical Geology, 343, p. 38-54.

Straub S.M. and Layne G.D. (2003). – The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones. Geochimica and cosmochimica Acta, 67, p. 4179-4203.